
Struct in C++

For C++, the only difference between struct and class is that by default in struct the

members are public and in class private.

class Date

{

 int Day, // no access modifier, consequently private

 iMonth,

 Year;

 Date() { } // error – private constructor is useless

 ………...

};

struct Date

{

 int Day, // no access modifier, consequently public

 iMonth,

 Year;

 Date() { }

 ………...

};

In practice, however, the struct is used for small classes containing only attributes. Or in

other words – struct in C++ has the same meaning as in C.

Copy constructor (1)

class Date

{

int Day, iMonth, Year;

public: Date(int, int, int);

 ……………………………….

};

void PrintDate(Date d)

{

printf("%d-%d-%d\n", d.GetDay(), d.GetMonth(), d.GetYear());

}

Each class has default copy constructor that copies byte by byte from original object into

the new object:

Date d1(27, 5, 2019);

Date d2 = d1; // d2 is created by default copy constructor

Date *pd3 = new Date(27, 5, 2019);

Date d4 = *pd3; // d4 is created by copy constructor, pd3 points to the original

PrintDate(d1); // argument d is created by copy constructor from d1

PrintDate(*pd3); // argument d is created by copy constructor, pd3 points to the original

PrintDate(Date(27, 5, 2019)); // contructs an object without name

 // this nameless object is the original in creating d

Copy constructor (2)

class Date

{

 int Day;

 char *pMonth = 0;

 int Year;

public:

 Date(int, const char *, int);

 ~Date() {if (pMonth) delete pMonth; }

……………………………………

};

Let:

static Date d1(27, "May", 2019); // global lifetime

Date d2 = d1; // local lifetime

Problem: as the default copy constructor copies attribute by attribute, the pointers

d1.pMonth and d2.pMonth point to the same memory field. Consequently, when d2 as a

local variable is deleted, d1 looses its value for attribute pMonth.

To overcome this and similar problems, we have to write our own copy constructor.

Copy constructor (3)

class Date

{

 int Day;

 char *pMonth = 0;

 int Year;

public:

 Date(int, const char *, int);

 ~Date() { delete pMonth; }

Date (const Date &Original)

{ // overloads the default copy constructor

Day = Original.Day; Year = Original.Year;

 int n;

pMonth = new char[n = strlen(Original.pMonth) + 1];

strcpy_s(pMonth, n, Original. pMonth);

}

…………………………………………………………………..

};

Date d2 = d1; // When the copy constructor is working, Original is the synonym of d1;

// Day, Year and pMonth are the members of d2.

Pointer this

By default, each class has a member called as this. It is the pointer which points to the

current object itself. For example:

class Date

{

……………………………………………………………..

Date (const Date &Original)

{ // overloads the default copy constructor

*this = Original; // At first copy everything, then modify

// Default assignment operator (discussed later) is applied

 int n;

pMonth = new char[n = strlen(Original.pMonth) + 1];

strcpy_s(pMonth, n, Original.pMonth);

}

 int GetDay() { return this->Day; }

 // some programmers mark all the methods and variables that are class members

 // with this->. Reason: they want to distinguish the local variables from class

 // members

…………………………………………………………………..

};

Friends (1)

Let us have class Date and the similar to it class Time:

class Time {

 int Hour, Min, Sec;

public:

 Time(int, int, int);

 …………………

};

Let us have also class Timestamp:

class Timestamp {

Date date; // aggregation

Time time;

public:

Timestamp();

~Timestamp();

Timestamp(int d, int mn, int y, int h, int m, int s) : date(d, mn, y), time(h, m, s) { }

void PrintTimestamp() {
 printf("%02d-%d-%d %02d:%02d:%02d\n", date.GetDay(), date.GetMonth(),

 date.GetYear(), time.GetHour(), time.GetMinutes(), time.GetSeconds());

 }

};

Friends (2)

If the author of all these 3 classes is the same programmer, then in class Timestamp he

would like to access the members of Date and Time directly. In C++ it is possible if

classes Time and Date are declared as friend classes of Timestamp :

class Time {

 …………………

 friend class Timestamp;

};

class Date {

 …………………

 friend class Timestamp;

};

Now:

class Timestamp {

 ……………………

void PrintTimestamp() { // accessor functions not needed
 printf("%02d-%d-%d %02d:%02d:%02d\n", date. Day, date.iMonth,

 date. Year, time. Hour, time.Min, time. Sec);

 }

};

Friends (3)

If class A declares that class B is its friend, class B has free access to all the members of

class A. But it does not mean that A can also access non-public members of B. Here classes

Time and Date allow class Timestamp to work with its private attributes. As Timestamp has

not declared friendship with Time and Date, those classes have no free access to Timestamp

private and protected members.

Friendship is not inherited. Also, if B declares that C is its friend, C has access to non-public

members of B but not to non-public members of A.

A class may also declare that a function out of classes is its friend. Example:

class Time; // put it at the beginning of file Date.h to explain the compiler

 // the meaning of word Time

class Date {

……………

friend void PrintTimestamp(Date *, Time *);

};

class Date; // put it at the beginning of file Time.h to explain the compiler

 // the meaning of word Date

class Time {

……………

friend void PrintTimestamp(Date *, Time *);

};

Friends (4)

Now function PrintTimestamp has access to all the members of classes Date and Time:

void PrintTimestamp(Date *pd, Time *pt)

{

 printf("%02d-%d-%d %02d:%02d:%02d\n", pd->Day, pd->iMonth, pd->Year,

 pt->Hour, pt->Min, pt->Sec);

}

Usage:

Date d(8, 3, 2019);

Time t(11, 3, 56);

PrintTimestamp(&d, &t);

Operator overloading (1)

class complex

{

 public: double Re, Im; // real part and imaginary part

 complex(double d1 = 0, double d2 = 0) { Re = d1; Im = d2; }

 complex operator+(complex &c)

 { return complex (Re + c.Re, Im + c.Im); }

 int operator==(complex &c)

 { return Re == c.Re && Im == c.Im ? 1 : 0; }

 complex operator!() { return complex(Re, -Im); }

 ……………………………………..

};

complex x(5, 6), y(1,2); // x = 5 + j6, y = 1 + j2

complex z1 = x + y; // Actually z1 = x.operator+(y); we get z1 = 6 + j8.

// When the operator method is working, c is the synonym of y; Re and

// Im are the members of x. The return value is a new nameless

// complex number. From it the default copy constructor creates z1.

if (x == y) // actually x.operator==(y)

 printf("Equal\n");

complex z2 = !x; // actually z2 = x.operator!(); we get z2 = 5 - j6 (conjugate of x)

Operator overloading (2)

Alternative solution:

class complex {

public: double Re, Im;

complex(double d1 = 0, double d2 = 0) { Re = d1; Im = d2; }

friend complex operator+(complex &, complex &);

friend int operator==(complex &, complex &);

friend complex operator!(complex &);

……………………………………..

};

complex operator+(complex &a, complex &b) {

return complex(a.Re + b.Re, a.Im + b.Im);

}

int operator==(complex &a, complex &b) {

return (a.Re == b.Re && a.Im == b.Im) ? 1 : 0;

}

complex operator!(complex &a) {

return complex(a.Re, -a.Im);

}

Operator overloading (3)

complex x(5, 6), y(1,2); // x = 5 + j6, y = 1 + j2

complex z1 = x + y; // actually z1 = operator+(x, y); we get z1 = 6 + j8

 // complex operator+(complex &a, complex &b) {

 // return complex(a.Re + b.Re, a.Im + b.Im); }

 //

 // When the operator method is working, a is the synonym of

 // x and b is the synonym of y. The return value is a new

 // nameless complex number. From it the default copy

 // constructor creates z1.

if (x == y) // actually operator==(x, y)

printf("Equal\n");

complex z2 = !x; // actually z2 = operator!(x); we get z2 = 5 - j6

Operator overloading (4)

It is not possible to:

1. Introduce new operators not specified in C++ standard.

2. Change the priorities.

3. Overload the sizeof operator, the scope resolution operator (::), the conditional operator

(?:) and the member selection operator (.).

Overloading of operators like new, delete, function call (()), array element reference ([]),

comma (,), assignment (=) and type cast may be tricky.

Let us take class Date:

Date d1(20, 10, 2019); // constructor called

Date d2 = d1; // default copy constructor called

Date d3; // constructor without arguments called

d3 = d1; // here we need operator overloading function for assignment

Each class has default assignment overloading function providing byte-by-byte copy. Rather

often it is not acceptable and we have to write our own assignment overloading function

replacing the default one.

Operator overloading (5)

Let us have:

class Date {

 int Day;

 char *pMonth = 0;

 int Year;

public:

 Date() { }

 Date(int, const char *, int);

 ~Date() { if (pMonth) delete pMonth; }

……………………………………

};

Let:

Date *pd1 = new Date(8, "March", 2019);

Date *pd2 = new Date; // constructor without arguments called

*pd2 = *pd1; // default assignment overloading function called

…………….

delete pd1;

Problem: as the default assignment overloading function copies attribute by attribute,

two objects of class Date share common memory field for month.. Consequently,

deleting one of them corrupts the other.

Operator overloading (6)

Date &Date::operator =(const Date &Right) // here & - specifies the reference type

{

 if (this == &Right) // here & - address operator

 return *this; // necessary for expressions like d1 = *pd where pd points to d1

 Day = Right.Day; Year = Right.Year;

 if (pMonth)

 delete pMonth;

 int n;

 pMonth = new char[n = strlen(Right.pMonth) + 1];

 strcpy_s(pMonth, n, Right. pMonth);

 return *this;

}

d1 = d2; // actually d1.operator=(d2);

i.e. this points to d1 and Right is the synonym of d2

d1 = d2 = d3; // d1 = d2.operator=(d3) → d1.operator=(d2.operator=(d3));

Therefore void Date::operator=(Date &Right) {…} does not work – the operator=

function must return the object.

Operator overloading (7)
class Date {

private: int Day, Year;

 char *pMonth = 0, *pText = 0;

public: ………………………

 operator char *() // operator function to overload type casting

 // no return value, the word "operator" is followed

// by the new type specifier

{

 pText = new char[64];

sprintf_s(pText, 64, "%d %s %d", Day, pMonth, Year);

return pText;

}

};

Date d (27, "May", 2020);

if (strcmp(d, "28 June 2020")) {

 // actually the operator char *() function associated with object d is called

printf(“Do not match\n”);

}

printf("%s\n", (char *)d);

Static members(1)

class Base

{

public: static int Counter; // declaration, but definition for initialization is also needed

 Base() { Counter++; }

 ~Base() { Counter--; }

};

int Base::Counter = 10; // definition, must be outside of functions and class declarations

 // applicable to public, protected and private members

Base b;

printf("%d\n", b.Counter); // not recommended

printf("%d\n", Base:: Counter); // correct

Static attributes get memory only once. They are shared between all the objects of that

class and also objects of classes derived from that class. The static attributes exist even when

there are no any objects defined yet.

class Derived : public Base {………………..};

Derived d;

printf("%d\n", d.Counter); // not recommended

printf("%d\n", Derived::Counter); // correct

Here Counter presents the current total number of objects of class Base plus objects of class

Derived.

Static members(2)

class Base

{

private: static int Counter;

public: Base() {Counter++; }

 ~Base() {Counter--; }

 static int GetCounter() { return Counter; }

};

int Base::Counter=0; // although private

class Derived : public Base {………………..};

Derived d;

printf("%d\n", d.GetCounter()); // not recommended

printf("%d\n", Derived::GetCounter()); // correct

printf("%d\n", Base::GetCounter()); // correct

Static functions of a class cannot operate with non-static members of that class. They can

be called even when there are no any objects defined yet.

All the non-static functions have access to any of the static members, the restrictions

depend only on the access specifiers (public, private, protected).

Constant members

The value of static or non-static value attribute may be declared as constant. In that

case they must be initialized right in the declaration. Later changes, of course, are not

possible.

Example:

class Date

{

 ……………….

 const char MonthNames[12][4] = {

 "Jan", "Feb", "Mar", "Apr", "May", "Jun",

 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

 };

 ……………….

};

Constant objects (1)

Let us have

class Test

{

private:

 int Value;

 int Counter;

public:

 Test(int i) { Value = i; Counter = 0; }

 void SetValue(int i) { Value = i; }

 int GetValue() { return Value; }

};

and

const Test *pt = new Test(1);

In that case:

pt->SetValue(5); // error: the object and consequently its attributes are constants

int i = pt->GetValue(); // also error!

If an object is constant, it is not possible to call methods associated with it.

Constant objects (2)

Solution:

int GetValue() const { return Value; } // const member function

Now:

const Test *pt = new Test(1);

int i = pt->GetValue(); // works

But the const member function cannot so simply change the state of object:

int GetValue() const { Counter++; return Value; } // compile error

To solve the problem cast the this pointer to non-const:

int GetValue() const

{

 ((Test *)this)->Counter++;

 return Value;

 }

or better

int GetValue() const

{

 (const_cast<Test *>(this))->Counter++;

 return Value;

 }

Casts (1)

The traditional explicit C cast (new type) expression is still in use:

double d = 5.6;

int i;

i = (int)d;

C++ has 4 new casting operators:

static_cast <new type> (expression)

dynamic_cast <new type> (expression)

reinterpret_cast <new type> (expression)

const_cast <new type> (expression)

Turn attention that the expression is always in parentheses.

The C-style cast is suitable for conversions between primitive data types. For conversions

between pointers the C++ new casting operators are preferred.

Generally, the static, reinterpret ja const casts do the same as the C-style cast but allow

more control over how the conversion should be performed. They are also easier to find

in the source code.

Dynamic cast correctness is checked during run-time.

Casts (2)

The static_cast checks a bit more that C-style cast and is therefore more secure.

double d = 5.6;

int i;

i = static_cast<int>(d) // the same as i = (int)d;

class Base { ….. };

class Derived : public Base { ….. };

Derived *pd = new Derived;

Base *pb = pd; // implicit cast

pd = pb; // compile error, implicit cast not allowed

pd = (Derived *)pb; // legal, but also a possible source of run-time errors

pd = static_cast<Derived *>(pb); // legal and possible source of run-time errors

But

class Class1 {……};

class Class2 {……};

Class1 *pc1 = new Class1;

Class2 *pc2 = new Class2;

pc2 = (Class2 *)pc1; // legal, but also a source of run-time errors

pc2 = static_cast<Class2 *>(pc1); // compile error, static cast not allowed

The static_cast checks whether the pointer and pointee data types are compatible.

Casts (3)

The reinterpret_cast checks nothing and allows to cast a pointer to any other type of

pointer (exactly as C-style cast):

class Class1 {……};

class Class2 {……};

Class1 *pc1 = new Class1;

Class2 *pc2 = new Class2;

pc2 = (Class2 *)pc1; // legal, but also a source of run-time errors

pc2 = reinterpret_cast<Class2 *>(pc1); // legal, but also a source of run-time errors

Using the reinterpret_cast instead of C-style cast the programmer emphasizes that he

knows about the possible risks. If the program has crashed, places where reinterpret_cast

(they are easy to find) is used are good start points for searching the bugs.

Casts (4)

The const_cast is used to convert a constant to non-constant. Example:

void alien (char *); // a third-party function we have to use

void fun (const char *p)

{ // our function, by specification its argument must be const char *

 ……………………

 alien(p); // compile error

 alien((char *)p); // legal, but may crash if p points to a string constant

 alien(const_cast<char *>(p)); // legal , but may crash if p points to a string constant

 ……………………..

}

fun("I am John"); // crashes when function alien tries to change this text

Generally, if you try to change a value declared as const, the behavior is undefined but

mostly the program crashes.

char *pc = new char[10];

strcpy(pc, "I am John");

const char *cpc = pc;

fun(cpc); // works because cpc points to memory field that is not constant

Casts (5)

The const_cast is safer because it can adjust the qualifier but not change the underlying

type:

class Class1 {……};

class Class2 {……};

Class1 c1;

const Class1 *pc1 = &c1;

Class2 *pc2 = const_cast<Class2 *>(pc1); // compile error, pc1 is from different type

Casts (6)

The dynamic_cast provides pointers run-time check (not compile-time as the other casts)

on casts within an inheritance hierarchy.

class Base

{

 virtual void base_fun(); // the hierarchy must contain at least one virtual method

 ………………..

};

class Derived : public Base { ….. };

Derived *pd;

Base *pb = new Base;

pd = static_cast<Derived *>(pb); // legal and possible source of run-time errors

pd = dynamic_cast<Derived *>(pb); // no compile error but when the program

 // runs, the result is null-pointer

if (!pd)

{

 ………………….

}

pb = dynamic_cast<Base *>(pd); // legal, no any errorrs

If the hierarchy does not contain virtual functions, a compile error will follow.

New variable types (1)

In C any variable of any type is interpreted as false if its value is zero and as true if its

value is not zero. This is still correct in C++.

To improve the readability of code, preprocessor definitions like

#define TRUE 1

#define FALSE 0

are used. In C++ there is an additional built-in type: bool

bool b1 = true, b2 = false;

Actually, b1 is stored as integer 1 and b2 as integer 0. Boolean variables are implicitly

(i.e. automatically) converted into integers and vice versa:

int i = b1; // i is now 1

b1 = 10; // b1 is now true

Examples of usage:

while (b1 == true) {……}

while (b1) {……}

while (!b2) {……}

bool fun()

{ …..

return true;

}

New variable types (2)

Pointer that points to nothing has value 0:

char *p = 0;

Rather often:

#define NULL 0

char *p = NULL;

void fun(char *p) {……….}

void fun(int i) {……….}

Problem:

fun(0); // as 0 is an integer, always the second function is called

Solution:

fun(nullptr); // the first function is called

fun(0); // the second function is called

nullptr is introduced in C++ v 11. Advised to use instead 0 when working with pointers.

	Slide 1: Struct in C++
	Slide 2: Copy constructor (1)
	Slide 3: Copy constructor (2)
	Slide 4: Copy constructor (3)
	Slide 5: Pointer this
	Slide 6: Friends (1)
	Slide 7: Friends (2)
	Slide 8: Friends (3)
	Slide 9: Friends (4)
	Slide 10: Operator overloading (1)
	Slide 11: Operator overloading (2)
	Slide 12: Operator overloading (3)
	Slide 13: Operator overloading (4)
	Slide 14: Operator overloading (5)
	Slide 15: Operator overloading (6)
	Slide 16: Operator overloading (7)
	Slide 17: Static members(1)
	Slide 18: Static members(2)
	Slide 19: Constant members
	Slide 20: Constant objects (1)
	Slide 21: Constant objects (2)
	Slide 22: Casts (1)
	Slide 23: Casts (2)
	Slide 24: Casts (3)
	Slide 25: Casts (4)
	Slide 26: Casts (5)
	Slide 27: Casts (6)
	Slide 28: New variable types (1)
	Slide 29: New variable types (2)

